
138

5.2 The Shell Debugger

A debugger is a software tool that helps programmers find bugs in complex
programs. This and the next section look at two simple debuggers that are
standard parts of Python. A word of caution before we start: you should not
let yourself become too dependent on a debugger. When you are starting out as
a programmer, it is much more important to learn to read your code carefully
than to become proficient with debugging tools. Good programmers write code
that is easy to read; once you know how the various statements of Python work,
errors should jump out at you. There is no program in all of these notes for which
a debugger is a necessary part of the program development. Still debuggers are
handy tools that can come to your rescue in those rare times when you just
don’t see what the problem is with your code. So use a debugger sparingly, but
don’t hesitate to use it when it will help.

There are two standard debuggers for the Python. One of these is built into
IDLE and the Python shell. The other is a module called ”Pdb”. The shell
debugger is simpler to use and has fewer features, so we will look at it first. The
next section discusses Pdb.

Suppose you are working with the following program:

def I sP r ime (x) :
for d in range (2 , x) :

i f x%d == 0 :
return Fa l s e

return True

def Pr i n tP r ime s (N) :
for num in range (2 ,N+1):

i f I sP r ime (num) :
print (num)

def main () :
P r i n tP r ime s (100)

main ()

Program 5.2.1: Finding Prime Numbers

To use the shell debugger your program must be loaded into the system’s mem-
ory. The easiest way to achieve this is to run the program from IDLE: just
select Run Module from the Run menu. You need to run the program through
to completion, so if your program expects input from the user, give it input
until the program stops executing. Then in the Debug menu of the shell select
the Debugger option. A Debug Control window will pop up:

5.2. THE SHELL DEBUGGER 139

To start debugging you need to restart your program. The program starts wtih
a call to main() so at the debugger prompt in the shell we type

>>> main ()

The Debug Controls window changes to include some information about the
program.

There are five buttons at the top of this window that control the actions of the
debugger. They are

140

Go This causes execution of the program to resume and run until the program
finishes.

Step This causes the next instruction in the code to be executed. If that in-
struction is a function call, control changes to the first line of that function.

Over This is similar to Step, only function calls are evaluated rather than
stepped into.

Out This causes the rest of the current function to be executed. The program
halts as soon as it returns from the current function.

Quit This stops the execution of the program and halts the debugger.

We will now go through a long series of steps examining our prime-generating
program in the debugger. When we Step into main() we see:

We now Step into PrintPrimes with argument 100:

5.2. THE SHELL DEBUGGER 141

You can see the value of N at the bottom of the screen. The first line of
PrintPrimes is a for-loop. Initially the loop variable num has no value. After we
Step again:

we see that num has the value 2 and we call IsPrime(num). The next Step takes
us inside funciton IsPrime

142

The for-loop is vacuous since the range(2,2) is the empty list, so IsPrime returns
True and we go back to function PrintPrimes:

5.2. THE SHELL DEBUGGER 143

When we execute the print instruction the value of num, 2, is printed in the
shell and we go to the next instruction:

The next value of num is 3:

144

This time we will step Over the call to IsPrime(num). This returns True since 3
is prime and we come to:

When we Step again num is printed, and we are back to our main for-loop:

5.2. THE SHELL DEBUGGER 145

We now have a sequence of Steps with the value of num at 4:

146

When x is 4 and d is 2, x%d==0 is True, so the function returns False

5.2. THE SHELL DEBUGGER 147

and we are back to the main for-loop of function PrintPrimes:

Now we have another sequence of steps to determine if 5 is prime:

148

First we try to divide 2 into 5:

5.2. THE SHELL DEBUGGER 149

Then we try 3:

150

We could continue in this way, but we know that 5 is prime and all of these
divisions will fail. Let’s step Out of the call to IsPrime This function completes
its execution and returns True, so we are back in function PrintPrimes:

5.2. THE SHELL DEBUGGER 151

At this point we have seen enough. We click on the Go button to continue the
rest of the program without interruption, and the remaining prime numbers are
printed to the shell. We could run the program again in the debugger by typing

>>> main ()

at the shell prompt. To exit from the debugger, either uncheck Debugger in the
Debug menu or click on the close-box in the upper right corner of the Debug
Control window.

